
1 

Enhanced Land Subsidence Interpolation through a Hybrid 1 

Deep Convolutional Neural Network and InSAR Time Series 2 

 3 

Zahra Azarm1; Hamid Mehrabi1; Saeed Nadi2 4 

 5 

1 Department of Geomatics Engineering, Faculty of Civil Engineering and Transportation, University of Isfahan,    6 

Isfahan, Iran 7 

2 Department of Civil an Environmental Engineering, Carleton University, Ottawa, Canada 8 

 9 

Correspondence to: Hamid Mehrabi (h.mehrabi@eng.ui.ac.ir) 10 

Abstract- Land subsidence, the gradual or sudden sinking of the land, is a global issue threatens infrastructure and 11 

the environment. This paper introduced a hybrid method based on deep convolutional neural networks (CNN) and 12 

persistent scattered interferometric synthetic aperture radar (PSInSAR) to estimate land subsidence in areas where 13 

PSInSAR cannot provide reliable measurements. This approach involves training a deep CNN with subsidence driving 14 

forces and PSInSAR data to learn patterns and estimate subsidence values. Our evaluation of the model shows its 15 

efficiency in overcoming the discontinuities observed in the PSInSAR results, producing a continuous subsidence 16 

surface. The deep CNN was evaluated on training, validation, and testing data, resulting in mean squared errors of 5 17 

mm, 9 mm, and 11 mm, respectively. In contrast, the kriging interpolation method showed a mean square error of 18 

37.19 mm in the experimental data set. subsidence prediction using the deep CNN method showed a 70% improvement 19 

compared to the Kriging interpolation method. 20 

 21 

Index Terms— Convolutional Neural Network (CNN); Prediction of subsidence; PSInSAR; driving forces; Kriging 22 

interpolation. 23 
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1. Introduction 24 

The gradual decrease in the height of the earth's surface, which is accompanied by slight horizontal displacements, is 25 

called subsidence. Due to the gradual nature of land subsidence, this phenomenon is also called "silent earthquake".  26 

Its harmful effects appear over a long period of time and carry significant risks. However, land subsidence is a global 27 

threat to urban areas around the world (Sun et al., 2023). This issue is an important global concern and is not limited 28 

to one region. Iran is facing an increasing challenge especially in this field. Human activities, such as mining and 29 

excessive underground water extraction, contribute to this problem. To address it, effective groundwater management 30 

to prevent unauthorized water extraction would help. However, land subsidence is not only caused by human actions, 31 

natural factors also play an important role. These include water table fluctuations, soil characteristics, depth of the bed 32 

rock, terrain features like elevation and aspect, vegetation cover, and prevailing climate. All these factors together 33 

create a complex landscape of land subsidence occurrences. 34 

Precise leveling and GNSS observations offer high precision in measuring subsidence. Still, they are limited in their 35 

ability to investigate subsidence over a wide area due to their reliance on measuring sparse stations. These methods 36 

require multiple measurements at different locations, making it difficult to monitor subsidence over large areas (Fialko 37 

et al., 2005; Hu et al., 2012). On the other hand, Interferometric Synthetic Aperture Radar (InSAR), has emerged as a 38 

high spatial resolution and cost-effective technique for monitoring subsidence on a large scale (Chang et al., 2010; 39 

Tamburini et al., 2010; Tomás et al., 2011; Rucci et al., 2012; Amighpey & Arabi, 2016; Biswas et al., 2018; Gonnuru 40 

& Kumar, 2018; Khorrami et al., 2019). InSAR uses radar waves to carefully monitor changes in the Earth's crust 41 

surface over time. Methods that analyse radar images over time, known as time series analysis, make them very 42 

effective for monitoring subsidence, which usually occurs gradually over time. Persistent Scatterer Interferometric 43 

Synthetic Aperture Radar (PSInSAR) is particularly valuable for monitoring urban land subsidence. This is because 44 

there are many high-density Persistent Scatterer (PS) points, mainly associated with buildings and man-made 45 

structures. This abundance significantly improves the quality of the data within interferograms (Gao et al., 2019). 46 

Although these advantages are significant, dealing with the sparse and uneven distribution of PSs in both spatial and 47 

temporal dimensions is a significant computational challenge. The PSInSAR approach generates discontinuous results, 48 

as it calculates subsidence exclusively at PS points. Consequently, it becomes imperative to employ intelligent 49 

interpolation instead of mathematical or stochastic methods, between these data points to fill out these gaps (Naghibi 50 

et al., 2022).  51 
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Subsidence is a complex physical phenomenon influenced by a multitude of factors, such as changes in groundwater 52 

levels, soil type, bedrock depth, slope, elevation, Aspect, etc.  To obtain the subsidence in the whole area, interpolation 53 

methods between PSs and artificial intelligence methods (which are trained with features affecting subsidence) can be 54 

used. Interpolation methods between PSs and artificial intelligence methods (trained with features affecting 55 

subsidence) can be used to obtain subsidence in the entire area. Classical interpolation methods (e.g. Kriging, IDW, 56 

RBF (Mehrabi & Voosoghi, 2018), RMLS (Mehrabi & Voosoghi, 2015)) do not consider the physics of the issue, 57 

making their results less reliable. So, it is very important to apply methods that take into account the real characteristics 58 

of the phenomenon, especially when monitoring the subsidence. Recently, machine learning methods specifically deep 59 

convolutional neural network (CNN) shows encouraging results in various applications. In the larger context of land 60 

subsidence prediction models, we find two main categories: Physical Process Models: These models simulate 61 

subsidence by incorporating factors like geotechnical mechanics, soil properties, and water dynamics. They are 62 

frequently used in large-scale projects but require a substantial amount of prior knowledge and data (Nie et al., 2015); 63 

Mathematical or Statistical Models: These models predict subsidence based on historical elevation data and past trends 64 

(Zhu et al., 2010). 65 

Several studies have investigated various forecasting models, methodologies, and influencing factors to improve our 66 

understanding of this field. Neural networks have emerged as powerful prediction tools, so neural networks have been 67 

used in the field of subsidence prediction using its driving forces. (Zhu et al., 2010; Azarakhsh et al., 2022; Ku & Liu, 68 

2023). Lee et al. (2023) employed data from an urban area in Korea to develop a machine learning-based model for 69 

predicting land subsidence risk. Their methodology incorporated historical land subsidence data along with attribute 70 

information pertaining to underground utility lines in the specified region. The research team utilized machine learning 71 

algorithms such as Random Forest (RF), eXtreme Gradient Boosting (XGBoost), and Light Gradient Boosting 72 

Machine (LightGBM) for the analysis and prediction of land subsidence risks (Lee et al., 2023). Sadeghi et al. (2023) 73 

combined full consistency decision-making (FUCOM) and GIS methodologies to assess Iran's vulnerability to land 74 

subsidence. Their approach resulted in the development of a hierarchical FUCOM-GIS framework, which highlighted 75 

critical factors such as water stress, groundwater depletion, soil type, geological time scale, and rainfall amount as the 76 

main drivers of land subsidence. Researchers commonly validate their results by comparing them with InSAR 77 

analyses, identifying areas exhibiting notable subsidence. Furthermore, the research assessed the risks to power 78 

transmission lines and substations, revealing structural issues such as pier sinking, electric insulator deviation, and 79 

cracking(Sadeghi et al., 2023). In another study focused on Dechen County, China, Wang et al. (2023) employed 80 
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Backpropagation Neural Network (BPNN) and RF algorithms, in conjunction with various monitoring data sources, 81 

GIS, and SBAS technology, to predict trends in land subsidence. Their findings underscored Sugianto town as the 82 

most severely affected area, with an annual average subsidence rate of -40.71 mm per year. The study highlighted that 83 

changes in both deep and shallow groundwater levels were the primary drivers of land subsidence in this region. 84 

Notably, the BPNN model demonstrated higher prediction accuracy compared to the RF model, especially when 85 

considering changes in groundwater levels (Wang et al., 2023). Furthermore, Zhuo et al. (2020) demonstrated that the 86 

integration of the GM (1,3) model with neural networks and ground-related variables shows great potential for 87 

achieving highly accurate subsidence predictions. The proposed approach has the  88 

capability to replace traditional precise leveling methods in long-term subsidence forecasting, offering valuable 89 

insights for urban disaster prevention (Zhou et al., 2020). 90 

Deng et al. (2017) conducted research on the integration of PSInSAR with Grey system theory for monitoring and 91 

predicting land subsidence, as demonstrated in the Beijing plain (Deng et al., 2017). Precision mapping of complete 92 

subsidence basins faces challenges, especially when dealing with image pairs with limited temporal separation. Rapid 93 

deformations and vegetative changes in such scenarios introduce complexity. Strategies, such as combining 94 

differential interferometric synthetic aperture radar (DInSAR) with the probability integral model (PIM), have been 95 

introduced to effectively delineate subsidence basins resulting from mining activities (Fan et al., 2015). 96 

The remarkable effectiveness of the RF model in mapping the susceptibility of land subsidence deserves attention. 97 

This approach demonstrates exceptional capabilities in identifying key factors that contribute to subsidence 98 

occurrences, such as the proximity to faults, elevation, slope angle, land use patterns, and water table levels. These 99 

factors play a crucial role in influencing the likelihood of subsidence events (Mohammady et al., 2019). In addition, 100 

the integration of fuzzy logic techniques and neural networks has been used to predict subsidence (Ghorbanzadeh et 101 

al., 2020). 102 

In this study we used a CNN model trained over the area where subsidence is available through PSInSAR. Then this 103 

model is used over other areas where subsidence cannot be obtained from PSInSAR processing. The proposed method 104 

follows three main steps: Calculation of subsidence in PSs by PSInSAR method, calculation of subsidence driving 105 

factors, and training CNN. 106 
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2. Methodology 107 

2.1 PSInSAR 108 

PSInSAR is a remote sensing technique that utilizes SAR images to monitor surface deformation over time. It relies 109 

on identifying PSs, which are stable points on the Earth's surface reflecting radar signals consistently. PSInSAR 110 

combines multiple interferograms created by comparing SAR images of the same area taken at different times. By 111 

analysing phase differences between radar signals in these interferograms, it detects changes in the Earth's surface 112 

over time. PSInSAR has significant advantages over DInSAR, as it effectively eliminates topographic errors, 113 

atmospheric noise, and addresses temporal and spatial correlation issues between radar images (Ferretti et al., 2001; 114 

Wasowski & Bovenga, 2014; Gonnuru & Kumar, 2018). PSInSAR, a form of differential interferometry, involves 115 

analysing a collection of at least 15 SAR images captured at  different times, all covering the same area (Crosetto et 116 

al., 2016). PSInSAR finds diverse applications, including monitoring subsidence in urban areas (Ferretti et al., 2000; 117 

Luo et al., 2013) and tracking natural hazards such as landslides, earthquakes, and volcanic 118 

activity (Peltier et al., 2010). However, one drawback of PSInSAR is the lack of continuity between PSs, as they 119 

depend on the land use of the area. These PSs are more abundant in areas  with buildings, dams, oil wells, pipelines, 120 

electric fences, roads, rocks, and bridges (Din et al., 2015), but they are relatively scarce in vegetated areas. 121 

Consequently, PSInSAR performs best in urban areas and regions with rocky terrain (Oštir & Komac, 2007). 122 

In this article, the amplitude dispersion index is used to select the persistent scatterer points, Eq. (1). The usual 123 

threshold of the amplitude dispersion index is limited between 0.2 and 0.4 (Conway, 2016).  124 

𝐷𝐴 = 𝜎𝐴 𝜇𝐴⁄                                                                                                                                                                                               (1) 125 

where 𝜇𝐴  ,  𝜎𝐴 are standard deviation and mean values of the radiometrically corrected amplitude of pixels. In PSInSAR 126 

the amplitude data from SAR images is carefully examined to identify specific PSs while excluding those affected by 127 

space-time decoherence and atmospheric delay (Li et al., 2004). 128 

 129 

  2.2. Deep Convolutional neural network (CNN) 130 

CNN is a type of deep learning algorithm widely employed for various image-related tasks like image recognition, 131 

classification, and regression. CNNs can automatically learn and extract essential features from raw image. They 132 

accomplish this by processing images through multiple layers of filters, known as "convolutions," which progressively 133 

extract more abstract features. These filters are trained using backpropagation, a technique that adjusts filter weights 134 
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based on the difference between predicted and actual outputs. In addition to convolutional layers, CNN typically 135 

includes pooling layers to down sample the convolutional output and fully connected layers to use the extracted 136 

features for image classification. CNN has gained popularity, particularly after the success of AlexNet in the ImageNet 137 

challenge in 2012 and has since become the dominant approach for image recognition tasks. 138 

CNN is used in various fields, including medical imagery (Lee et al., 2017), classification (LeCun & Bengio, 1995), 139 

segmentation (Nair & Hinton, 2010; Van Do et al., 2024), image reconstruction (Christ et al., 2016; Lakhani & 140 

Sundaram, 2017; Elboushaki et al., 2020), and natural language processing (Kim et al., 2018). While CNN are often 141 

associated with categorical tasks, they are also highly effective in regression tasks, where the goal is to predict 142 

continuous output variables instead of discrete labels. In CNN regression, the network typically has a single output 143 

neuron in the final layer that generates a continuous value instead of a probability distribution for classification. It is 144 

important to note that CNN requires a lot of input data, especially for image processing. As the network's depth 145 

increases, so does its complexity, resulting in a larger number of weight parameters, which can sometimes create 146 

challenges during training (Liu et al., 2018). CNN introduced the concept of local connections between layers with 147 

typical components including convolution, activation and pooling layers (Chen et al., 2018). The convolutional layer 148 

learns image features from small sections of input data through mathematical operations involving the input image 149 

matrix and a filter or kernel. The activation layer introduces nonlinearity into the network, commonly using the 150 

Rectified Linear Unit (ReLU) function. 151 

CNN regression is a valuable approach for predicting continuous output variables and has found applications in 152 

various fields including geology and civil engineering. CNN regression can also be used to predict subsidence. By 153 

training a CNN model with input-output pairs, where inputs are subsidence driving forces and outputs represent 154 

subsidence values, researchers can predict subsidence at single-pixel levels and provide valuable insights. 155 

To predict land subsidence, we trained a CNN regression model with the architecture shown in Error! Reference 156 

source not found.. The CNN has 31 layers, including three 1×1 convolutional layers, three 3×3 convolutional layers 157 

followed by three 2×2 max-pooling layers, Batch Normalization layers, drop out layers with a rate of 0.1, and two 158 

fully-connected layers with 1024 Rectified Linear Unit (ReLU) activation neurons, two fully-connected layers with 159 

512 ReLU activation neurons, and a fully-connected layer with 256 ReLU activation neurons. The input dimensions 160 

are 30×30×9, where 30×30 patches separated from the neighborhood of each scattered point and 9 features are used 161 

as network input.         162 
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                                                                                                                            163 

Figure 1: Illustration of CNN Architecture 164 

We used the mean square error function as the cost function, a batch size of 128, a learning rate of 0.0001, and trained 165 

the network for 150 epochs. To divide the data, we allocated 15% to the test data, 15% to the validation data, and 70% 166 

to the training data. However, we noticed high-cost function fluctuations for the training and validation data, so we 167 

increased the training data to 80%, and allocated 10% each to the test and validation data. This helped to reduce the 168 

fluctuations (Table 1). 169 

 170 

 171 

Table 1. Key parameters of the CNN 172 

parameters value 

Activation function of hidden layer, input layer ReLu 

Activation function of output layer Linear 

Input shape 30×30×9 

Loss function MSE 

Batch size 128 

Epoch 150 

Train-validation-test 80% -10% -10%  Of total data 

 173 

2.3. Driving forces of subsidence  174 

Previous research in this field has identified several factors that impact land subsidence. These factors include changes 175 

in the water table, soil type, depth of the rock bed, elevation, slope, aspect, rainfall patterns, vegetation cover, flow 176 

index, topography index, distance from rivers, distance from faults, lithology (Yang et al., 2014; Fan et al., 2015; 177 
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Conway, 2016; Abdollahi et al., 2019; Andaryani et al., 2019; Mohammady et al., 2019; Zang et al., 2019; 178 

Ghorbanzadeh et al., 2020; Shi et al., 2020; Zhou et al., 2020; Zhao et al., 2021; Wang et al., 2023). 179 

The Topographic Wetness Index (TWI) is a mathematical formula that quantifies the effect of local topography on the 180 

flow of surface water. It is a physically based index that can be used to determine flow direction and accumulation 181 

and has many practical applications in fields such as hydrology, agriculture, and geology. In rainfall runoff modeling, 182 

TWI can be used to predict the amount and timing of runoff in a specific area, while in soil moisture modeling it can 183 

be used to predict the spatial distribution of soil moisture.  Overall, the TWI is a useful tool for understanding and 184 

predicting the movement of water across the landscape (Qin et al., 2011). Also, TWI identifies areas that can be 185 

affected by flooding from rainfall events (Ballerine, 2017). TWI equation is as follows (Moore et al., 1991): 186 

TWI = ln( ⍺ tanβ⁄ )                                                                                                                                                                              (2)                                                       187 

Where ⍺ the upslope contributing area and β is slope. TWI is calculated utilizing a Digital Elevation Model (DEM) 188 

of the study areas. The flow power index (SPI) measures the power of water flow in depositing and causing soil 189 

erosion.  As a result, this index can be an important input for subsidence prediction models. The equation used to 190 

calculate SPI is as follows (Pradhan et al., 2014): 191 

SPI = ⍺ ∗ tanβ                                                                                                                                                                                  (3) 192 

Here, ⍺ flow accumulation, and β represents the slope. Land subsidence results from a combination of factors, 193 

including both topographic and altitude-related features, such as rainfall and lithology. Research has demonstrated 194 

that areas at lower altitudes tend to experience more subsidence. Additionally, the slope and aspect of an area can 195 

influence drainage patterns, erosion, and sediment production, all contributing to subsidence. The amount of 196 

vegetation, as measured by the Normalized Difference Vegetation Index (NDVI), also plays a significant role. Less 197 

vegetation often indicates a higher risk of subsidence. The distance from a river and distance from faults are other 198 

crucial subsidence driving forces. Groundwater depletion is a primary contributor to subsidence, emphasizing the 199 

importance of preventing unauthorized withdrawals and effectively managing water resources. It's essential to 200 

recognize that examining one factor alone is not enough to predict subsidence. A linear relationship between 201 

groundwater level changes and subsidence may exist in certain regions, but this linear relationship does not exist in 202 

all regions. Each region has unique characteristics such as soil type, fault lines and slope, etc. Subsidence is a complex 203 

phenomenon that requires a comprehensive investigation that takes into account all relevant factors. Therefore, 204 
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Figure 2: Geographic overview of the study area. (© Google Earth)   

thorough analysis is necessary to obtain a comprehensive understanding of subsidence in a particular area (Azarm et 205 

al., 2023). 206 

3. Study Area and Datasets 207 

3.1. Study area 208 

The studied area is in Isfahan province and includes the cities of Isfahan, Mahyar, Khomeinishahr and Falavarjan. 209 

This region has a rich history of human habitation, diverse cultural heritage and a wide range of economic activities. 210 

Covering approximately 7000 square kilometers, this area displays various uses, including urban, agricultural and 211 

industrial areas. Its climate is semi-arid, characterized by hot summers and cold winters. The primary sources of water 212 

in this area are the Zayandeh-Rud River and several underground aquifers that provide various uses such as agriculture, 213 

drinking water, and industrial needs (Neysiani et al., 2022) (Fig. 2). To effectively monitor and predict land subsidence 214 

in this study area, we used advanced techniques such as radar interferometry and convolutional neural networks 215 

(CNN). Our goal was to provide an accurate and reliable estimate of land subsidence in the study area by integrating 216 

these techniques and considering complex subsidence driving forces. 217 

           218 

 219 

 220 

 221 

 222 

 223 

 224 

 225 
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3.2. Datasets 226 

This study uses radar images obtained from the Sentinel-1A satellite to analyse subsidence trends in the study area 227 

over a six-year period, 2014 to 2020. The PSInSAR technique was applied to the data using the Sarproz software. The 228 

30 meters SRTM DEM of 229 

the study area, with a spatial resolution of 30 meters, was used to calculate the SPI, TWI, slope, and aspect using the 230 

ArcMap software. The obtained data provided insights into the subsidence driving forces (Fig. 3). 231 

    232 

  233 

      234 

 235 

Figure 3: Subsidence driving forces - (a) Altitude, (b) Slope, (c) SPI, (d) TWI (e) Aspect 236 

(d) (c) 

(e) 

(b) (a) 
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The Landsat 8 satellite launched by NASA provided optical images that were used in this study to extract the NDVI 237 

and land use information in the study area for the year 2020. Average annual changes of NDVI between 2014 and 238 

2020 were calculated with Envi software. The relationship between subsidence and groundwater level changes should 239 

be investigated over a long period of time. Therefore, in this research, using the piezometric wells of the region, the 240 

water table map was calculated for the period of 2014 to 2018In areas where the density of exploitation wells is higher 241 

due to the extraction of underground water resources, the probability of subsidence is higher in those areas, so the 242 

distance from exploitation wells was calculated as one of the driving forces (Fig. 4). 243 

  244 

 245 

 246 

Figure 4: Driving forces of subsidence- (a) NDVI (b) Distance of Wells (c) Land use, (d) Water table map in 2018 to 2020 247 

 248 

 249 

 250 

 251 

(b) 
(a) 

(c) 
(d) 
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4. Result 252 

4.1. Results of CNN 253 

 254 

CNN was trained using the calculated driving forces and subsidence at the PSs and the performance of the network 255 

by analysing the graphs of the cost function (mean squared error) for the training and validation data, as shown in 256 

Figure 5, the MSE values of this model for the training, validation and test data are 5, 9 and 11 mm, respectively.  257 

 258 

Figure 5: Cost function of training and validation data 259 

4.2. Comparison between CNN and Kriging 260 

We employed two distinct methods to create continuous subsidence surface: interpolation and CNN. To establish a 261 

continuous subsidence surface within the study area, we utilized Kriging interpolation. This method only performs 262 

interpolation between the PSs and calculates the subsidence of all the pixels in the study area and does not consider 263 

the subsidence driving forces. In contrast, a CNN was trained using subsidence  driving forces and used to predict 264 

subsidence, producing a continuous subsidence surface with higher reliability.  CNN can effectively handle irregularly 265 

distributed data points, making them suitable for scenarios where PSs may not be evenly distributed across the study 266 

area. Kriging relies on the spatial distribution of data points, and irregular distributions can impact its accuracy.  267 
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To assess the accuracy of these methods in predicting subsidence, we calculated MSE for both the methods, MSE of 268 

CNN, Kriging is 11 and 37.19 mm, respectively. By comparing these outcomes, we can evaluate the effectiveness of 269 

both interpolation and CNN in predicting land subsidence. 270 

4.3 Subsidence of Study area 271 

In our analysis of land subsidence in the Isfahan region, we processed a total of 73 Sentinel-A images using the 272 

PSInSAR method. Through this process, we identified PSs by applying a range amplitude dispersion index threshold 273 

of 0.2 and a temporal correlation threshold of 0.8. The maximum velocity for these PSs was observed in the northeast 274 

of the study area, specifically near Shahid Beheshti Airport in Isfahan, measuring at -67 mm per year. This significant 275 

rate resulted in a cumulative displacement of approximately -33 cm in the period from 2014 to 2020 (Fig. 6). 276 

 277 

Figure 6: Cumulative displacement of PSs in 2014 to 2020 278 

A velocity map was created using Kriging interpolation between PSs. The results showed that the highest velocity, 279 

approximately 67 mm per year, was observed in the northeast of the study area (Fig. 7).  280 
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 281 

Figure 7: Velocity map using Kriging 282 

In this research, in order to obtain a continuous subsidence surface of a specific area, two methods, Kriging and CNN, 283 

Kriging method is based on mathematics and interpolation between cumulative displacement of PSs. The maximum 284 

amount of cumulative displacement obtained by the Kriging method in the studied area is approximately 36 cm (Fig. 285 

8). 286 

 287 

Figure 8: Cumulative displacement using Kriging in 2014 to 2020 288 

The CNN method was trained with the cumulative displacement of PSs and the subsidence driving forces in these 289 

points, and finally the subsidence of the entire area was predicted with this model. The maximum amount of 290 

cumulative displacement obtained by the CNN method in the studied area is approximately 33 cm (Fig. 9).  291 
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 292 

Figure 9: Cumulative displacement using CNN in 2014 to 2020 293 

Shahid Beheshti Airport in Isfahan is currently facing a concerning situation with the estimated velocity reaching more 294 

than 45 mm each year. This rate has resulted in a significant cumulative displacement of 41 cm in the region from 295 

2014 to 2020. In addition, the map produced by CNN shows that the maximum cumulative displacement in this area 296 

has reached 42 cm. Our study also revealed noteworthy findings for Mahyar and Nasr Abad Jarqouye. In these areas, 297 

the velocity is approximately 5 cm per year, resulting in a maximum cumulative displacement of approximately 33 298 

cm between 2014 and 2020. The maximum cumulative displacement using kriging interpolation showed 299 

approximately 35 cm. However, the maximum cumulative displacement using CNN showed approximately 32 cm 300 

(Fig. 10). 301 

 302 

 303 

 304 

 305 

 306 
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 307 

 308 

 309 

Figure 10: Cumulative Displacement of Shahid Beheshti Airport and Mahyar and Nasr Abad Jarqouye in 2014 to 2020: 310 

(a), (b) Continuous surface of cumulative displacement using Kriging interpolation between PSs (c), (d) Continuous surface 311 

of cumulative displacement (e), (f) Cumulative displacement of PSs 312 

In the Naqsh-Jahan area, the maximum cumulative displacement estimated through the kriging and CNN methods 313 

between 2014 and 2020 was approximately 6 cm and 12 cm, respectively.  Meanwhile at the Si-o-Se Pol area, the 314 

maximum cumulative displacement estimated through the kriging and CNN methods between 2014 and 2020 was 315 

approximately 6 cm and 19 cm, respectively (Fig. 11).  316 

(e) 

(f) 

(d) 

(c) 

(b) 

(a) 
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317 

318 

 319 

Figure 11: Cumulative Displacement of Naqsh-Jahan and Si-o-Se Pol area, 2014 to  2020: (a), (b) Continuous surface of 320 

cumulative displacement using Kriging interpolation between PSs (c), (d) Continuous surface of cumulative displacement 321 

resulting from CNN (e), (f) Cumulative displacement of PSs 322 

 323 

The city of Khomeini Shahr is facing a concerning situation where the velocity has been estimated to be more than 45 324 

mm per year. Unfortunately, this has resulted in displacement in residential areas, with the maximum cumulative 325 

displacement of PSs reaching 30 cm from 2014 to 2020. According to the map generated using CNN, the maximum 326 

cumulative displacement is currently at 31 cm. It has been estimated that the velocity in Falavarjan city is more than 327 

23 mm per year, which is concerning. As a result, there has been a maximum cumulative displacement of 16 cm in 328 

the area from 2014 to 2020. According to the CNN-generated map, the maximum cumulative displacement in 329 

Falavarjan is 23 cm (Fig. 12Error! Reference source not found.). 330 

(f) 
(e) 

(d) (c) 

(b) 
(a) 
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331 

332 

 333 

Figure 12: Cumulative Displacement of Khomeini Shahr and Falavarjan, 2014 to  2020: (a), (b) Continuous surface of 334 

cumulative displacement using Kriging interpolation between PSs (c), (d) Continuous surface of cumulative displacement 335 

resulting from CNN (e), (f) Cumulative displacement of PSs 336 

 337 

Data Availability 338 

The SAR Sentinel-1A dataset used in this study is freely available for access on the web at 339 

https://dataspace.copernicus.eu 340 

(a) 

(b) 

(c) 

(d) 

(e) (f) 
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5.  Conclusion 341 

The PSInSAR method has proven to be a dependable technique for investigating gradual land deformation, particularly 342 

subsidence. However, it yields discrete results limited to PSs only, making it less suitable for areas with vegetation. 343 

In such scenarios, Kriging interpolation between PSs is commonly used to create a continuous subsidence surface. 344 

Nevertheless, this approach has its limitations due to the complex nature of subsidence influenced by various factors. 345 

In our study, we tackled this challenge by generating a continuous subsidence surface for the entire study area using 346 

a CNN. We factored in the driving forces of subsidence in this process. We evaluated the accuracy of both Kriging 347 

interpolation and CNN methods by calculating the mean square error on the test data. The results revealed that the 348 

study area experienced more than 38 cm of subsidence between 2014 and 2020. Notably, the velocity was estimated 349 

to be over 45 mm per year at Shahid Beheshti airport, exceeding 54 mm per year in the Mahyar Plain, and around 6 350 

mm per year in Naqsh-Jahan and Sio-Se-Pol Bridges. The mean square error values for the training, validation, and 351 

test data using the CNN were determined to be 5 mm, 9 mm, and 11 mm, respectively. These results indicated a 352 

significant improvement of 70% in the prediction of subsidence with intelligent interpolation CNN compared to the 353 

kriging interpolation method. This CNN-based method offers a robust and accurate interpolation approach, even when 354 

dealing with sparse and irregularly distributed data. 355 
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